Singular perturbations for a subelliptic operator

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

HERMITE OPERATOR AND SUBELLIPTIC OPERATORS IN Hn

In this note, we compute the fundamental solution for the Hermite operator with singularity at arbitrary point y ∈ R. We also apply this result to obtain the fundamental solution for the sub-Laplacian Lα = − ∑n j=1(X 2 j +X 2 j+n)− iαT on the Heisenberg group. In this note, we first derive the fundamental solution of the Hermite operator n ∑ j=1 ( λjx 2 j − ∂2 ∂xj ) in Rn, i.e., we are looking ...

متن کامل

Boundary Conditions for Singular Perturbations

Let A : D(A) H ! H be an injective self-adjoint operator and let : D(A) ! X, X a Banach space, be a surjective linear map such that k k X c kAAk H. Supposing that Range (0) \ H 0 = f0g, we deene a family A of self-adjoint operators which are extensions of the symmetric operator A jf =0g. Any in the operator domain D(A) is characterized by a sort of boundary conditions on its univocally deened r...

متن کامل

A Sharp Maximal Function Estimate for Vector-Valued Multilinear Singular Integral Operator

We establish a sharp maximal function estimate for some vector-valued multilinear singular integral operators. As an application, we obtain the $(L^p, L^q)$-norm inequality for vector-valued multilinear operators.

متن کامل

Inverse problem for a singular differential operator

In this paper, we give the solution of the inverse Sturm–Liouville problem on two partially coinciding spectra. In particular, in this case we obtain Hochstadt's theorem concerning the structure of the difference q(x) − ˜ q(x) for the singular Sturm Liouville problem defined on the finite interval (0, π) having the singularity type 1 4 sin 2 x at the points 0 and π.

متن کامل

Coupled singular perturbations for phase transitions

The Γ (L 1 (Ω; R d))-limit of the sequence Jε(u) := 1 ε Eε(u), where Eε is the family of anisotropic singular perturbations Eε(u) := Ω f (x, u(x), ε∇u(x)) dx of a non-convex functional of vector-valued functions E(u) := Ω f (x, u(x), ∇u(x)) dx is obtained where f is a non-negative energy density satisfying f (x, u, 0) = 0 if and only if u ∈ {a, b}.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ESAIM: Control, Optimisation and Calculus of Variations

سال: 2018

ISSN: 1292-8119,1262-3377

DOI: 10.1051/cocv/2017063